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Abstract. The turbulent fluxes of momentum, heat and water

vapour link the Earth’s surface with the atmosphere. There-

fore, the correct modelling of the flux interactions between

these two systems with very different timescales is vital for

climate and weather forecast models. Conventionally, these

fluxes are modelled using Monin–Obukhov similarity the-

ory (MOST) with stability functions derived from a small

number of field experiments. This results in a range of for-

mulations of these functions and thus also in differences

in the flux calculations; furthermore, the underlying equa-

tions are non-linear and have to be solved iteratively at each

time step of the model. In this study, we tried a different

and more flexible approach, namely using an artificial neu-

ral network (ANN) to calculate the scaling quantities u∗ and

θ∗ (used to parameterise the fluxes), thereby avoiding func-

tion fitting and iteration. The network was trained and vali-

dated with multi-year data sets from seven grassland, forest

and wetland sites worldwide using the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) quasi-Newton backpropagation

algorithm and six-fold cross validation. Extensive sensitiv-

ity tests showed that an ANN with six input variables and

one hidden layer gave results comparable to (and in some

cases even slightly better than) the standard method; more-

over, this ANN performed considerably better than a mul-

tivariate linear regression model. Similar satisfying results

were obtained when the ANN routine was implemented in

a one-dimensional stand-alone land surface model (LSM),

paving the way for implementation in three-dimensional cli-

mate models. In the case of the one-dimensional LSM, no

CPU time was saved when using the ANN version, as the

small time step of the standard version required only one it-

eration in most cases. This may be different in models with

longer time steps, e.g. global climate models.

1 Introduction

The turbulent fluxes of momentum, heat, water vapour and

trace gases link the atmosphere with the Earth’s surface.

Therefore, the faithful representation of these fluxes is es-

sential for climate and weather forecast models to function

properly. In these models, the fluxes are parameterised as mo-

mentum flux τ = ρu2
∗ and heat flux H = −ρcpu∗θ∗ (where

ρ is air density and cp is air heat capacity), using a velocity

scale u∗ and a (potential) temperature scale θ∗. u∗ and θ∗ de-

pend on near-surface wind and temperature, their gradients,

surface roughness and atmospheric stability. In the frame-

work of the almost exclusively used Monin–Obukhov simi-

larity theory (MOST; Monin and Obukhov, 1954), one has to

determine stability functions for momentum and heat which

depend on a single stability parameter (for details, see e.g.

Arya, 2001). These stability functions must be determined

empirically and have been obtained by different authors from

regressions on observations from a small number of field ex-

periments. As shown in Högström (1996), the results vary

considerably, especially in the very stable and the very un-

stable regimes, due to a lack of and/or a large scatter of

the observations and possibly violations of the assumptions

of MOST. Furthermore, the underlying non-linear equations

must be solved iteratively at each time step of a model run

which can be time consuming.
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In the present study, artificial neural networks (ANN) and

their ability to simulate a wide range of relationships be-

tween input and output variables as a universal approximator

(Hornik et al., 1989) are used to model the stability func-

tions. Our goals in this study are (a) to see how well ANNs

can approximate the stability relationships, (b) to possibly in-

crease accuracy by using larger data sets, (c) to use the more

flexible ANN approach instead of function fitting and (d) to

possibly speed up the calculations. With positive outcomes,

we ultimately want to replace the relevant subroutines in a

climate model with ANNs in order to improve overall model

performance.

A good overview of various applications of ANNs in dif-

ferent disciplines can be found in Zhang (2008). Several

studies (e.g. Gardner and Dorling, 1999; Elkamel et al., 2001;

Kolehmainen et al., 2001) describe applications of ANNs

to meteorological and air quality problems. In these studies,

long time series of observational data are available for ANN

training and only one station is involved in the training and

validation process. Comrie (1997) compares ozone forecasts

using ANNs with forecasts using standard linear regression

models and finds that ANNs are “somewhat, but not over-

whelmingly” better than the regression models. The best per-

formance is obtained with an ANN incorporating time lagged

data. Gomez-Sanchis et al. (2006) use a multilayer percep-

tron (MLP) to predict ozone concentrations near Valencia

based on meteorological and traffic information. Different

model architectures are tested and good agreement with ob-

servations is found. However, for different years different

model architectures are required for optimal results, which

they attribute to the varying relative importance of the input

variables. Elkamel et al. (2001) use a one hidden layer ANN

and meteorological and precursor concentrations to predict

ozone levels in Kuwait. They find that the ANN gives consis-

tently better predictions than both linear and non-linear (log

output) multivariate regression models. Kolehmainen et al.

(2001) compare the ability of self-organising maps and the

MLP to predict NO2 concentrations when combined with dif-

ferent methods to preprocess the data. They find that direct

application of the MLP gives the best results. In all of these

studies, just one hidden layer is sufficient, and it is pointed

out that careful selection of the input data is crucial.

Some papers deal with the idea of replacing whole mod-

els or model components with ANNs. For example, Knutti

et al. (2003) teach a neural network to simulate certain out-

put variables of a global climate model and use the result to

establish probability density functions as well as to enlarge

a global climate model ensemble considerably. Gentine et al.

(2018) use an ANN to parameterise the effects of sub-grid-

scale convection in a global climate model. The ANN learns

the combined effects of turbulence, radiation and cloud mi-

crophysics from a convection resolving sub-model. They find

that using the ANN, many of these processes can be pre-

dicted skilfully, but spatial variability is reduced compared

with the original climate model; they attribute this to chaotic

dynamics accounted for in the original model, but not in the

version using the ANN, which is deterministic by construc-

tion. Sarghini et al. (2003) and Vollant et al. (2017) use an

ANN trained with direct numerical simulation data as a sub-

grid-scale model in a large-eddy simulation model. Sarghini

et al. (2003) find that the ANN is able to reproduce the non-

linear behaviour of the turbulent flows, whereas Vollant et al.

(2017) find that the ANN performs well for the flow cases

the ANN was trained for, but that it can fail for other flow

configurations.

This paper is structured as follows: in Sect. 2, we give a

short overview over Monin–Obukhov similarity theory and

artificial neural networks, introduce cross-validation, present

the data used (including important quality checks) and de-

scribe our strategy to find the best network. Thereafter,

trained ANNs (which are in fact MLPs, but we will stick to

the generic name ANN here) are validated and results are

discussed (Sect. 3). In Sect. 4, the ANN that shows the best

performance is implemented in a one-dimensional land sur-

face model (LSM), and the results are compared with those

of the standard version. A summary is given in Sect. 5.

2 Methods and data

2.1 Monin–Obukhov similarity theory (MOST)

In weather forecast and climate models, the turbulent fluxes

of momentum, heat, water vapour and trace gases between

the Earth’s (land and water) surface and the atmosphere are

usually calculated on the basis of Monin–Obukhov similar-

ity theory (MOST, Monin and Obukhov, 1954). Here, we

give a very brief overview of MOST, focussing on momen-

tum and heat fluxes; details can be found in Arya (2001).

The main assumptions of MOST are as follows: horizon-

tally homogeneous terrain (in particular, flow characteristics

are independent of wind direction), stationarity, fair (i.e. dry)

weather conditions and low terrain roughness, i.e. no or low

vegetation; for tall vegetation, the last assumption is usually

circumvented by introducing the concept of displacement

height d ≈ 0.67z. MOST postulates that turbulence in the

surface layer (also called the Prandtl or constant flux layer)

only depends on four quantities: the height above the ground

z (for tall canopies z–d), a velocity scale u∗, a temperature

scale θ∗ and a buoyancy term g/θ , where g is gravitational

acceleration and θ denotes potential temperature. The veloc-

ity and temperature scales depend on the respective velocity

and temperature gradients as well as on atmospheric stabil-

ity, and this dependence will be used later to build the neural

networks. According to the Buckingham Pi theorem, these

four quantities based on length, time and temperature can

be combined to a single non-dimensional quantity ζ = z/L,

where L = u2
∗θ/(κgθ∗) is the Obukhov length and κ ≈ 0.40

is the von Kármán constant; other dimensionless quantities

such as dimensionless wind and temperature gradients can
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be expressed as functions of ζ . The Obukhov length L mea-

sures the stratification of the surface layer: large (positive or

negative) values (i.e. ζ ≈ ±0) indicate neutral stratification,

positive values indicate stable stratification and negative val-

ues indicate unstable stratification. As momentum flux is ex-

pressed as τ = ρu2
∗, and heat flux as H = −ρcpu∗θ∗ (ρ is air

density and cp is air heat capacity), our goal is to determine

u∗ and θ∗ from known quantities, which are modelled or ob-

served wind and temperature gradients in the surface layer

in our case. Non-dimensional wind shear φm and the non-

dimensional gradient of the potential temperature φh (also

called stability functions) can be written as

φm(ζ ) =
κz

u∗

∂u

∂z
, φh(ζ ) =

κz

θ∗

∂θ

∂z
(1)

respectively, where u is the mean wind speed at height z.

The “universal” functions φm and φh can be obtained from

simultaneously measured values of the wind speed and tem-

perature gradients and the momentum and heat fluxes (pro-

viding u∗ and θ∗). Conversely, u∗ and θ∗ can be calculated

from these universal functions, given the wind speed and

temperature gradients; this is how these functions are used

in weather and climate models. Data from field experiments,

notably the Kansas experiment in 1968, have been used to de-

rive these universal functions by Businger et al. (1971). Gen-

erally, the stability functions obtained in this manner have the

following form:

φm, h(ζ ) =
(
αm, h + βm, hζ

)γm, h , (2)

with the coefficients depending on ζ > 0 or ζ ≤ 0. An

overview of these functions can be found in Högström

(1988); Högström (1988) shows that there is considerable

scatter in the data (especially under very stable and very un-

stable conditions) and, as a result, also in the derived univer-

sal functions.

In applications, differences are known rather than gradi-

ents. Integrating the functions (Eq. 1) between a reference

height zr and z yields

κ (u(z) − u(zr))
/
u∗ = ln(z/zr) − 9m (z/L),

κ (θ(z) − θ (zr))
/
θ∗ = ln(z/zr) − 9h (z/L), (3)

where

9m, h(z/L) =
z/L∫

zr/L

(
1 − φm, h(x)

)
dx/x. (4)

For the purpose of climate modelling, i.e. obtaining fluxes

from simulated wind and temperature profiles, u∗ and θ∗
need to be derived from the respective wind and temperature

data at two heights using Eq. (1) or Eq. (3). As ζ itself de-

pends on u∗ and θ∗, this amounts to solving a system of two

non-linear equations; we will call this traditional method the

MOST method.

2.2 Neural networks

In this section, we describe only those aspects of neural net-

works which are relevant to our study; for more informa-

tion on neural networks, the reader is referred the litera-

ture, e.g. Rojas (2013); Kruse et al. (2016). Neural networks,

or more precisely artificial neural networks (ANNs), are a

widely used technique to solve classification and regression

problems as well as to analyse time series (Zhang, 2008).

The building blocks of an ANN are the so-called neurons,

arranged in different layers. An ANN has at least an input

and an output layer; between these layers, there can be so-

called hidden layers. The neurons in successive layers (but

not within the same layer) are connected via weights (see

Fig. 7). A neuron processes input data as follows:

oj = f

(
N∑

i

oi · wij

)
, (5)

where oj is the output of the neuron j , N is the number of

neurons in the preceding layer (including the bias neuron,

see below), oi is the output of the ith neuron in the preced-

ing layer and wi j is corresponding weight. Non-linear be-

haviour of the network is induced by using non-linear acti-

vation functions f . Each neuron belongs to a unique layer in

a directed graph. Here, we use so-called multilayer percep-

trons (MLP), also known as feed-forward networks due to the

unidirectional information flow. Each MLP consists of an in-

put, an output and at least one hidden layer with an arbitrary

number of neurons. The input layer takes (normalised) input

data and the output data returns the (also normalised) results

of the MLP. Normalisation is essential for equal weighting

of the input and for consistency with the domain and range

of the activation functions. Input information is propagated

from layer to layer while each neuron responds to the signal.

Bias neurons are used to adjust the activation level.

All free parameters (i.e. weights) of a MLP need to be

determined by a training process. In the case of supervised

learning, the MLP knows its deviation from target values at

every time and an error can be calculated using this deviation

(Zhang, 2008). The aim of the training is to minimise an er-

ror metric by adjusting the network’s weights. Here we use

the mean squared error (MSE):

MSE =
1

|P |
∑

p∈P

1

N�

N�∑

j

(
tjp − ojp

)2
, (6)

where P is the total number of data points, N� is the number

of neurons in the output layer, tjp is the target value of data

point p and ojp is the output of the MLP for data point p.

In the study described here, we use a MLP with hyperbolic

tangent activation functions in the hidden layer(s) (here one

or two) and linear functions in the output layer trained by the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton

backpropagation algorithm (Broyden, 1970; Fletcher, 1970;

Goldfarb, 1970; Shanno, 1970).

www.geosci-model-dev.net/12/2033/2019/ Geosci. Model Dev., 12, 2033–2047, 2019



2036 L. H. Leufen and G. Schädler: Calculating surface layer fluxes with neural networks

2.3 Regression model

To compare the performance of the neural networks de-

scribed in Sect. 2.2 with a standard regression model, we

used the multivariate linear regression (MLR) model as im-

plemented in the “mvregress” MATLAB routine:

yj =
∑

i

βij · xi + ǫj , (7)

where the βij are the regression coefficients and the ǫj are

the residual errors with a multivariate normal distribution.

The model uses a multivariate normal maximum likelihood

estimation. The resulting values for βij maximise the log-

likelihood function logL(β,ǫ |y,x ). We used the same six-

element input vector and two-element target vector as for the

ANN (both described in Sect. 2.6), as well as the same train-

ing and independent test data sets (from DE-Keh station; see

Sect. 2.4 and 2.5).

2.4 Data

To train and validate the neural network, data from 20 me-

teorological towers in Europe, Brazil and Russia spread over

different land use types including forest, grassland and crop

fields were collected. All data were measured after the year

2000 and observation periods range from a few months to

several years. Figure 1 shows a map of the sites that pro-

vided data. Stations varied widely with respect to their en-

vironmental surrounding, instrumental set-up and measure-

ment heights. The tower configuration of the sites is shown

schematically in Fig. 2. For our purposes, we required tem-

perature and wind speed at two measurement heights as well

as the momentum and sensible heat fluxes to calculate the

scaling quantities u∗ and θ∗ (see Sect. 2.6). The fluxes at

the sites used were all measured using the eddy covariance

method. If this information was not available, density was

calculated from the ideal gas equation using virtual temper-

ature when humidity data were available, otherwise the tem-

perature of dry air was utilised. For forests, all observations

had to be above the canopy, and all vertical distances were re-

duced by the displacement height, which was assumed to be

two-thirds of the canopy height. The original temporal res-

olution of the data was either 10 or 30 min; these data were

aggregated to 1 h averages.

An important step before using data as input for the ANN

was to check if the data were compatible with Monin–

Obukhov theory, i.e. if an (at least approximate) functional

relationship between ζ and the right-hand sides of Eq. (1)

was present and if so, how well they were represented by

the universal stability functions in Eq. (1). It was found that

no relationship existed for some sites. This may have been

due to a violation of the assumptions of the Monin–Obukhov

theory, such as inhomogeneous terrain around the site or the

dependence of the roughness length on the wind direction.

Data from these sites were not used further, except for data

from the DE-Tha site (see Sect. 4). The remaining stations

(see Table 1), which comprised about 113 500 hourly aver-

aged data points in total (see Table 2), were used to train

and validate the networks. For these stations, agreement was

generally better for temperature than for wind; furthermore,

agreement was better for unstable than for stable stratifica-

tion, an observation which is often mentioned in the litera-

ture.

Data were preprocessed before they were presented to the

ANN. Input and output data were normalised according to

their extrema to the interval [0,1] (see Table 3). Furthermore,

weak wind situations with wind speeds below 0.3 m s−1 were

filtered out. Because of the large scatter of wind and temper-

ature gradients under atmospheric conditions with absolute

heat fluxes below 10 W m−2 or small scaling wind speeds

(u∗ < 0.1 m s−1), such data were excluded. Finally, the signs

of the temperature scale θ∗ and the potential temperature

gradient had to be the same; this meant excluding counter-

gradient fluxes which can be observed over forests (Denmead

and Bradley, 1985) and ice (Sodemann and Foken, 2005) but

violate the assumptions of MOST (Foken, 2017a, b).

2.5 Cross-validation and generalisation

Trained networks were validated using k-fold cross-

validation (Kohavi, 1995; Andersen and Martinez, 1999) to

prevent overfitting (Domingos, 2012). Overfitting originates

from the trade-off between minimising the error for given

data and maximising performance for new unknown data

(Chicco, 2017). In the first experiment, the full data set is

divided into k = 6 subsets using a random data split with

approximately equal size first. Cyclically, one subset is kept

for independent testing, the remaining k −1 subsets are used

for training and validation. Using this experiment, we can

show that ANNs are able to learn from the data and to rep-

resent their characteristics. In the second experiment, we go

one step further and check if the ANNs found can handle

not only unknown data but also completely new stations that

were not previously used, i.e. if they are able to generalise.

For this experiment, we decided to validate trained models

using the NL-Cab station and to then test the best ANNs on

the DE-Keh station, which had been left out in the training

and validation phases of this experiment (see stations details

in Sect. 2.4). For these two stations, the MOST method per-

formed best; thus, they present a strong challenge for the

ANNs with respect to achieving similar quality.

2.6 ANN set-up and the selection of the best ANN

Neural networks are very flexible in terms of the number of

layers, the number of nodes, the error metrics, the training

method, the activation function and so on; thus, a series of

sensitivity runs were performed, which always consisted of a

training and a validation phase. To find an optimal network

architecture, we varied the following parameters:
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Figure 1. Location of the stations that provided data for this study. Station symbols represent low (red square; grasslands, croplands and

wetlands) and tall (yellow circle; forest) vegetation. HDCP2 includes the DE-Nie07, DE-Nie13 and DE-Was06 stations, and HYMEX

includes the FR-CorX and FR-GiuX stations. Further information can be found in Table A1.

Figure 2. The schematic set-up of the meteorological towers used

for this study. Available measurements for wind velocity (black, left

arm) and temperature (black, right arm) are shown as well as the

final measurement height that was used for wind (blue), temperature

(yellow) and turbulent fluxes (red). Vegetation height is illustrated

in green, and towers with a total height above 80 m are clipped.

(“Left arm” and “right arm” in this caption refer to horizontal arms

that the instruments are mounted to on a real mast.)

– the number and type of input variables,

– the number of hidden layers (one or two) and

– the total number of nodes in the hidden layer(s) (be-

tween 1 and 14).

To avoid an excessive number of sensitivity runs, the pa-

rameters listed in Table 3 were kept fixed based on rec-

ommendations in the literature (Zhang, 2008; Kruse et al.,

2016). Training was carried out in batch mode; therefore, the

network’s weights were adjusted after each epoch. Training

ended at most after 1000 epochs or if the error on the valida-

tion data increased for 50 successive epochs (early stopping).

In the latter case, the state of the trained network with the

lowest error for the validation data (and not the early stop-

ping state) was set as final state. We tested network archi-

tectures with six- and seven-element input vectors. The six-

element input vector consisted of the wind speed and poten-

tial temperature averages over the two heights, the vertical

gradients of wind and potential temperature, and their ratio

and a classifier to distinguish between low
(
cveg = 0

)
and tall(

cveg = 1
)

vegetation. For the seven-element input vector, we

replaced the temperature gradient by its absolute value and

added an additional input node describing the sign of the po-

tential temperature gradient. In both cases, the target vector

remained a two-element vector consisting of the wind scale

u∗ and the temperature scale θ∗. As mentioned above, we ex-

perimented with ANNs with one and two hidden layers. For

the ANNs with one hidden layer, we varied the number of

neurons in the hidden layer from one to twice the size of the

input layer. For ANNs with two hidden layers, the number

of neurons in each layer was increased up to the number of

input neurons.

All networks were trained to minimise the overall (sum of

u∗ and θ∗) MSE on normalised data from Eq. (6). To compare

the different ANNs, we used the root-mean-squared error

(RMSE) RMSE =
√

MSE, the mean absolute error (MAE)

MAE =
1

|P |
∑

p∈P

1

N�

N�∑

j=1

∣∣tjp − yjp

∣∣ (8)
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Table 1. Station information for the meteorological towers selected for training and validation (see Sect. 2.4); a list of all stations is given

in Table A1. Land usage classification follows the International Geosphere–Biosphere Programme (IGBP) standards: evergreen needle-leaf

forests (ENF), grasslands (GRA), permanent wetlands (WET) and croplands (CRO).

Station Complete station name Lat Long Height IGBP Tower height

(◦) (◦) (m a.s.l.) (m)

BR-San Santarem Pasture Tower Site (Para, Brazil) −3.02 −54.89 100 GRA/CRO 20

DE-Fal Grenzschichtmessfeld Falkenberg 52.17 14.12 73 GRA 10

DE-KaN KIT CN Messmast 49.09 8.43 110 ENF 200

DE-Keh Messstation Forst Kehrigk 52.18 13.95 49 ENF 30

NL-Cab CESAR Observatory 51.97 4.93 −0.7 GRA 213

RU-Che Cherksii Tower 68.61 161.34 6 WET 5

SE-Svb Svartberget ICOS Sweden 64.25 19.77 270 ENF 150

Table 2. Time series information for the meteorological towers se-

lected for training and validation. Count and availability are mea-

sured at hourly intervals and not at the original resolution of each

time series.

Station From To Availability Count

BR-San 1 Jan 2001 22 Sep 2005 62 % 25 503

DE-Fal 1 Jan 2008 21 Dec 2009 70 % 12 118

DE-KaN 1 Mar 2015 30 Dec 2016 78 % 12 541

DE-Keh 1 Jan 2008 29 Dec 2009 70 % 12 207

NL-Cab 1 Jan 2014 30 Nov 2017 94 % 32 337

RU-Che 26 May 2014 14 Oct 2016 40 % 8283

SE-Svb 18 Jan 2015 1 Nov 2016 68 % 10 707

Total 113 696

and the Pearson correlation coefficient (r)

r =
1

N�

N�∑

j=1

∑
p

(
yjp − yj

)(
tjp − tj

)
√∑

p

(
yjp − yj

)2 ·
√∑

p

(
tjp − tj

)2

∈ [−1,1] , (9)

where yj and tj are the averages of the j th net output and

the target value with yj = 1
|P |
∑

pyjp and tj = 1
|P |
∑

ptjp.

When ANNs are to be used in climate models, one has to

find a trade-off between two aspects: on the one hand, the

model should perform well according to the quality metrics

described above, on the other hand, a superior model in terms

of small errors but with higher computational demands may

not be the best choice for use in climate models where re-

ducing computing time is a very high-priority criterion. For

ANNs, computing time normally increases with the com-

plexity of a network, i.e. with its size. Therefore, we also

tested ANNs with smaller-than-optimal numbers of neurons

in view of this trade-off. To find smaller networks that pos-

sibly required less computing time, we looked at networks

that met the requirement that the size of each hidden layer

nhi
was less or equal to the size of the input layer nI minus 1:

nI − 1 ≥ nh1

(
≥ nh2

)
. (10)

This condition was found after some experimentation and is

somewhat arbitrary, but there is no hard rule defining the sim-

plicity of a model. We will refer to ANNs that satisfy this

condition as “simple networks”.

3 Results

As described in Sect. 2.5, ANNs are always trained on the

training data set only and validated on a disjoint validation

data set. If the MSE on the validation set rises continuously,

training is stopped to prevent overfitting (early stopping).

Following this training and validation stage, the ability of

the selected ANNs to generalise is tested on data that are

completely new to the ANNs. All in all, more than 100 000

networks were trained and tested this way.

3.1 Effect of data splitting

The validation results from ANNs with six inputs and one

single hidden layer trained under six-fold cross-validation

with random data splitting are shown in the box-and-

whiskers plot in Fig. 3 as a function of the number of hidden

neurons. One can see that the validation MSE decreases with

the increasing number of hidden neurons and has already

reached an asymptotic value of about 0.008 with six to seven

neurons. Furthermore, the scatter of the MSE is quite small,

meaning that the quality of the results from ANNs trained on

different sets varies only slightly.

If the training data are not split randomly but undergo a

station-wise split, a larger MSE and a considerably larger

scatter of the MSE results are found. Comparing Fig. 4 with

Fig. 3 shows that the MSE roughly doubles, whereas scat-

ter increases by about a factor of 10, almost independent of

the network architecture. Conversely, increasing the network

size does not necessarily imply a lower MSE. Using two hid-

den layers slightly reduces the median and error minimum,

but also increases the MSE spread. The comparison of Fig. 3

with Fig. 4 also shows that the station-wise error minima are

comparable to those obtained from a random data split. In
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Table 3. Fixed network parameters for training (following Zhang, 2008; Kruse et al., 2016).

Normalisation x̃i = (xi − minData (xi))/(maxData (xi) − minData (xi))

Activation function Hyperbolic tangent

Activation function output Linear

Training algorithm BFGS quasi-Newton backpropagation

Error metric MSE

Early stopping after ... epochs 50

Maximum number of epochs 1000

Training mode Batch

Figure 3. Network with six inputs and one hidden layer under six-

fold cross-validation: the MSE of the network trained on the valida-

tion data set using random data splitting as a function of the hidden

layer size. Whiskers indicate the interquartile range, and each box

summarises the results from 750 single networks.

both types of validation, ANNs with one and two hidden lay-

ers are not significantly different.

All in all, comparing Fig. 3 with Fig. 4 shows that the

station-wise data split substantially reduces the ANN perfor-

mance. This implies that using not enough stations as well

as station-wise training impairs the generalisation of learned

relationships between inputs and target values. Possible rea-

sons for this may be the tendency of the ANNs to overfit

training data by memorising relationships and local effects

contaminating the validity of MOST, such as unideal po-

sitioning of sites or unideal atmospheric conditions. These

findings confirm the need for independent testing with data

that is unknown to the ANN in order to estimate the ANNs

real ability to generalise. This will be discussed in the next

section.

3.2 Generalisation to unknown data

After showing that ANNs are able to extract u∗ and θ∗ from

training data successfully, our next step is to assess how the

ANNs found in the previous section can handle input from

stations which were not used for training or validation, i.e.

data completely unknown to them; this simulates the sit-

uations in which ANNs would be used in climate models

(where grid points play the role of stations). To test this,

we choose the NL-Cab station for validation and DE-Keh

as the unknown station. We selected these two stations be-

cause the MOST method performed best for these stations;

therefore it is a strong challenge for the ANNs to produce

equivalent results. The results of the networks that perform

best on the validation set are summarised in Table 4, where

we compare the ANNs according to the increasing complex-

ity of their network architecture. For comparison, and in view

of reducing CPU time, we also show the results of the best

simple networks (as defined in Sect. 2.6) in this table. Ta-

ble 4 shows that all ANNs perform better than the MOST

method on the validation data set (NL-Cab), in terms of the

MSE and correlation coefficient (r). Applying these ANNs

to the test data set (DE-Keh) results in an increased MSE and

a lower correlation coefficient, whereas the MOST method

performs better on the test data set. Among the ANNs, the

6–5–3–2 ANN displayed the best test performance with a

MSE of 0.68×10−2, but the simpler 6–3–2 ANN was second

best (also in terms of the MSE); thus, simple networks can

be almost as good as larger networks. Networks with seven

inputs have no substantial advantage over networks with six

inputs in our research. ANNs with two hidden layers perform

slightly better on the test data than ANNs with a single hid-

den layer. The overall correlation between network outputs

and target values is quite high (r ≥ 0.85) in all cases.

We also carried out a comparison for the turbulent momen-

tum and heat fluxes τ = ρu2
∗ and H = −ρcpu∗θ∗, which are

the quantities ultimately needed in climate simulations. Re-

sults for the momentum and heat fluxes of three networks that

performed well as well as for the MOST method are shown

in Figs. 5 and 6 and in Tables 5 and 6, respectively. In the ta-

bles we also show the results of the multivariate linear regres-

sion (MLR) described in Sect. 2.3. Both ANNs, MLR and

the standard method tend to underestimate larger momentum

fluxes, but differences among ANNs are quite small. The best

agreement is achieved with the 6–5–3–2 ANN, which is al-

most as good as the standard method.

Regarding the heat flux, the differences between the ANNs

are again relatively small, but the ANNs as well as the stan-

dard method tend to overestimate the heat fluxes, whereas
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Figure 4. The validation MSE of trained networks using a station-wise data split as a function of the hidden layer size for (a) the network with

six inputs and one hidden layer (left), and (b) the network with seven inputs and two hidden layers (right). The numbers on the bottom axis

of (b) indicate the number of neurons in the first (top row) and second (bottom row) hidden layer. Values for the other networks considered

are similar. Whiskers indicate the length of interquartile range, and each box summarises the results from 750 single networks.

Table 4. Performance results of the overall best network and the best simple network. MSE and r are measured on normalised data and are

non-dimensional. MSEv and rv are calculated on validation data, and MSEt and rt are calculated on test data. The performance of the MOST

method (the “Benchmark”) is also shown.

Condition Net. structure No. weights MSEv rv MSEt rt

(10−2) (10−2)

Overall best net. 6–5–2 47 0.17 0.94 0.90 0.89

7–11–2 112 0.18 0.92 0.96 0.86

6–5–3–2 61 0.20 0.93 0.68 0.88

7–5–2–2 58 0.19 0.92 0.79 0.88

Best simple net. 6–3–2 29 0.38 0.92 0.74 0.87

7–4–2 42 0.21 0.92 1.36 0.87

6–3–3–2 41 0.27 0.91 0.84 0.85

7–4–2–2 48 0.22 0.90 1.01 0.86

Benchmark – – 0.92 0.85 0.58 0.92

MLR underestimates them (not shown). The best results are

obtained with the 6–3–2 ANN. For heat flux, the 7–5–2–2

ANN behaves quite differently to the other ANNs. It pro-

duces two distinct states, one around −30 W m−2 and the

other from 50 to 200 W m−2; as a result, r is reduced but

the MAE is lowest for this 7–5–2–2 ANN. Thus, the 7–5–

2–2 ANN acts more like a dichotomous classifier of stability

rather than the continuous regression we are looking for. As

for the momentum fluxes, the ANNs shows considerably bet-

ter performance than the regression model. These results re-

iterate that smaller networks can be as good as or even better

than larger networks.

All ANNs show considerably better performance than the

multivariate linear regression model. This is not really sur-

prising, as the scaling quantities to be approximated are non-

linear functions of stability (Arya, 2001), meaning that an

ANN with a non-linear activation function would be ex-

Table 5. Performance of networks vs. multivariate linear regression

(MLR) and the MOST method (“Benchmark”) for momentum flux

at the DE-Keh station.

Net. structure MSE RMSE MAE r

(10−2 N2 m−4) (N m−2) (N m−2)

6–5–3–2 2.11 0.15 0.09 0.90

7–5–2–2 2.44 0.16 0.10 0.89

6–3–2 2.56 0.16 0.09 0.87

MLR 5.81 0.24 0.17 0.89

Benchmark 1.72 0.13 0.08 0.90

pected to perform better than any linear model; as Tables 5

and 6 show, this is the case, even for the small 6–3–2 ANN

with one hidden layer.
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Figure 5. Plots of network output vs. target values for momentum flux on unknown test data (DE-Keh). The 6–3–2 ANN (a), 6–5–3–2

ANN (b), 7–5–2–2 ANN (c) and the MOST method (d) are shown. Contours represent the kernel density estimates of the two-dimensional

probability density distribution with the 95th, 75th, 25th and 5th percentiles (yellow contours – starting from the outermost contour) and the

50th percentile (green contour).

Figure 6. Plots of network output vs. target values for heat flux on unknown test data (DE-Keh). The 6–3–2 ANN (a), 6–5–3–2 ANN (b),

7–5–2–2 ANN (c) and the MOST method (d) are shown. Contours represent the kernel density estimates of the two-dimensional probability

density distribution with the 95th, 75th, 25th and 5th percentiles (yellow contours – starting from the outermost contour) and the 50th

percentile (green contour). The vertical gap is due to the exclusion of heat fluxes between ±10 W m−2.
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Table 6. Performance of networks vs. multivariate linear regression

(MLR) and the MOST method (“Benchmark”) for heat flux at the

DE-Keh station.

Net. structure MSE RMSE MAE r

(W2 m−4) (W m−2) (W m−2)

6–5–3–2 2461 49.6 37.6 0.85

7–5–2–2 2329 48.3 31.4 0.82

6–3–2 2092 45.8 35.1 0.88

MLR 4447 66.7 53.3 0.65

Benchmark 1915 43.8 34.4 0.90

Table 7. Relative computational demand of the ANNs discussed in

the text.

Net. structure No. of CPU time

weights (relative to 6–3–2 ANN)

6–3–2 29 1

6–5–2 47 1.6

7–11–2 112 3.7

6–5–3–2 61 2.5

7–5–2–2 58 2.4

A comparison of the CPU time required by the different

ANNs relative to 6–3–2 ANN is shown in Table 7. The table

shows that the increase in computational demand is approx-

imately proportional to the number of weights (as could be

expected), and therefore increases considerably when two-

layer networks are used. As the discussion above shows,

these costs are not reflected in a substantially higher quality

of results.

We can conclude that generalisation entails a reduced per-

formance of the ANNs with quite small differences between

the various ANNs. The performance of the ANNs is compa-

rable to the MOST method, and the simplest 6–3–2 network

has the best score in terms of accuracy and computational

efficiency.

4 Implementation of an ANN in a land surface model

As already mentioned, our goal is to replace the MOST

method for calculating fluxes with an ANN in the land sur-

face component of climate models; in doing so, we expect

more flexibility, accuracy and to possibly save CPU time.

The results presented in the previous section indicate that

from an accuracy and computational efficiency point of view,

the 6–3–2 ANN seems to be most suitable for implementa-

tion into a land surface model (LSM). This ANN is shown in

Fig. 7.

We implemented the 6–3–2 ANN with weights as obtained

in the previous sections in a stand-alone version of the one-

dimensional LSM Veg3d (Braun and Schädler, 2005); this

Figure 7. The architecture of the 6–3–2 ANN implemented in the

land surface model. Input is described in Sect. 2.6. Purple circles

are bias neurons.

replaced the routine using the MOST method to calculate the

scaling quantities u∗ and θ∗. Here, we refer to the LSM ver-

sion with the original MOST version as the reference ver-

sion. Input data for the ANN and data normalisation were

the same as described in Sect. 2.4 and output was analo-

gously de-normalised. As the LSM requires the moisture flux

in addition to the momentum and heat fluxes, we calculated

the scaling specific humidity q∗ as proportional to θ∗ fol-

lowing the standard procedure used in boundary layer me-

teorology (Arya, 2001). Meteorological input for the LSM

consisted of 30 min values of short- and longwave radiation,

wind speed, temperature, specific humidity and air pressure

at two heights; soil type and land use were also additionally

prescribed. In the present study, the meteorological data were

only available for the DE-Fal station for the year 2011 and

for the DE-Tha site for the year 1998. For comparison with

observations, time series of heat and moisture fluxes as well

as soil temperature and soil moisture in the upper soil lay-

ers were available, so that the effect of the ANN on the soil

component could also be assessed. We performed the com-

parison with data from the DE-Fal (grassland, year 2011) and

DE-Tha (evergreen needle-leaf forest, year 1998) stations for

years which had not yet been used for training or validation;

thus, the data were new to the ANN in the sense that time pe-

riods were used which had not been previously used for train-

ing and validation. The DE-Tha station had not been used at

all up until this point, as the other sites selected in Sect. 2.4

were more consistent with MOST than DE-Tha and because

the DE-Tha time series covered only 1 year. We compared

the RMSE and the correlation coefficient of the calculated

values with those observed for the reference version and the

ANN version. Additionally, we compared the required CPU

times. The results of the comparison are shown in Tables 8

and 9.

Especially for grassland, the results of the reference ver-

sion are very good in terms of RMSE and correlation coeffi-
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Table 8. Comparison of the reference version with the ANN version

of Veg3d for the DE-Fal grassland station. H denotes the heat flux,

M is moisture flux, Ts is soil temperature and ws is soil moisture.

Reference ANN

CPU time 10.83 10.65

RMSE H (W m−2) 16.8 27.3

rH 0.87 0.81

RMSE M (W m−2) 15.1 20.5

rM 0.91 0.86

RMSE Ts (◦C) 0.8 1.3

rTs 0.99 0.99

RMSE ws (%) 4.8 5.5

rws 0.87 0.89

Table 9. Same as Table 8, but for the forest station DE-Tha.

Reference ANN

CPU time 95.47 97.74

RMSE H (W m−2) 39.0 40.9

rH 0.52 0.57

RMSE M (W m−2) 27.9 33.1

rM 0.78 0.71

RMSE Ts (◦C) 2.4 2.2

rTs 0.98 0.98

RMSE ws (%) 5.3 3.7

rws 0.53 0.75

cients, and it is difficult for the ANN version to outperform

this. However, the results show that the ANN version is able

to produce results of a similar quality to the reference ver-

sion for the fluxes as well as for soil temperature and soil

moisture. For tall vegetation, RMSEs are larger and the cor-

relation coefficients are lower; but the differences between

the ANN version and the reference version are even smaller

than for grassland, and the ANN version even outperforms

the reference version for soil moisture. In terms of fluxes, the

reference version is generally slightly better. Regarding CPU

time, there are only minor differences, although we expected

the ANN version to be faster. However, due to the small prog-

nostic time step used, once initialised, the reference version

does not need to do more than one iteration to find a solution

to the non-linear equation and to update the scaling quanti-

ties in most cases; hence, the expensive iteration is reduced

considerably. In summary, as a result of this first comparison,

it can be concluded that the ANN version works as well as

the reference version.

5 Summary

We used an ANN (more precisely, a MLP) to obtain the scal-

ing quantities u∗ and θ∗ as defined in MOST; these parame-

ters are used in weather and climate models to calculate the

turbulent fluxes of heat and momentum in the atmospheric

surface layer. To train, validate and test the neural network, a

large set of worldwide observations was used, which repre-

sented tall (forests) and low vegetation (grassland and agri-

cultural terrain). A quality assessment of the data sets showed

that not all of them were compatible with MOST, so only 7

of the 20 initial data sets could be used.

Sensitivity studies were performed with different sets of

input parameters, data sampling methods and network archi-

tectures; validation was undertaken using 6-fold cross vali-

dation. An important part of the overall network validation

was to assess the ability of the network to generalise, i.e. to

produce acceptable output if input were data from stations

that were completely unknown to the network. These studies

showed that even a relatively small 6–3–2 network with six

input parameters and one hidden layer yields satisfying re-

sults in terms of the RMSE and correlation coefficient. With

respect to the trade-off between the quality of results and the

computational efficiency, this network performed best.

We could show that the results of the ANN were equiva-

lent to the standard method in all of the tests we performed.

A final validation with the heat and momentum fluxes instead

of the scaling quantities showed that the MOST method and

the ANN approach were also almost equal in terms of quality

in this case, with the 6–3–2 ANN performing best. Further-

more, we could show that the ANNs outperform a multivari-

ate linear regression model with the same input and output

variables and training and test data. This could be expected,

as the stability functions are non-linear functions; therefore,

even a small ANN with one hidden layer and a non-linear

activation function could be expected to perform better than

any linear model. An implementation of the 6–3–2 ANN into

an existing LSM showed that the ANN version gives results

equivalent to the standard implementation, sometimes even

with even higher correlations. However, no decrease in the

required CPU time was found.

In summary, it could be shown that even at this stage,

an ANN gives results comparable in quality to the MOST

method. Some obvious improvements will include more and

better differentiated land use classes (e.g. water and urban ar-

eas) and more situations of strong stratification. Next steps

will include more experiments with the input parameters

(e.g. including a time lag) and some fine tuning to improve

the computational efficiency (e.g. using different activation

functions). We intend to implement and test the neural net-

work routine in a three-dimensional regional climate model

(RCM). We expect to save about 5 % of the CPU time, taking

parallelisation into account. This may not seem like much,

but RCMs in particular are very expensive to run (climato-

logically relevant multidecadal simulations at high resolu-

tion can take several tens of weeks on a high performance

system), so every saving counts. The implementation will

require the ANN to learn some additional land use types,

such as urban areas or water surfaces. If these tests are posi-

tive, this would pave the way for replacing other “uncertain”
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components of climate models (e.g. cloud microphysics, sea

ice) with neural network subroutines, similar to the work de-

scribed in Sarghini et al. (2003) and Vollant et al. (2017),

which would increase flexibility and save CPU time. The

main hindrance to this undertaking is the current lack of suit-

able training and validation data. An alternative to “real”’

data may be the use of data from more detailed models such

as LES or urban climate models.

Code availability. A MATLAB script (run.m) that runs the 6–3–2

network with a sample data set (DE-KaN.dat) can be found at http:

//doi.org/10.23728/b2share.36ef510c515c4a00bb963113647e44a9.

Data availability. The data for this study were obtained from the

sources mentioned in the acknowledgements.

Geosci. Model Dev., 12, 2033–2047, 2019 www.geosci-model-dev.net/12/2033/2019/



L. H. Leufen and G. Schädler: Calculating surface layer fluxes with neural networks 2045

Appendix A

Table A1. Station information for all of the meteorological towers utilised in the study. Land use classification follows the International

Geosphere–Biosphere Programme (IGBP) standards: evergreen needle-leaf forests (ENF), evergreen broadleaf forests (EBF), grasslands

(GRA), permanent wetlands (WET) and croplands (CRO).

Station Complete station name Lat Long Height IGBP Tower height

(◦) (◦) (m a.s.l.) (m)

BR-San Santarem Pasture Tower Site (Para, Brazil) −3.02 −54.89 100 GRA/CRO 20

BR-Tap Tapajos National Forest (Santarem, Para, Brazil) −3.01 −54.58 100 EBF 67

DE-Fal Grenzschichtmessfeld Falkenberg 52.17 14.12 73 GRA 10

DE-Ham Wettermast Hamburg 53.52 10.10 0.3 GRA 300

DE-KaN KIT CN Messmast 49.09 8.43 110 ENF 200

DE-Keh Messstation Forst Kehrigk 52.18 13.95 49 ENF 30

DE-Lkb Lackenberg Messstation 49.10 13.30 1300 GRA 9

DE-Nie07 HDCP2 Flux Station 07 Hambach Niederzier 50.90 6.46 110 GRA 5

DE-Nie13 HDCP2 Tower 13 Hambach Niederzier 50.90 6.46 110 GRA 30

DE-RuW Wüstebach 50.50 6.33 621 ENF 38

DE-Tha Anchor Station Tharandt 50.96 13.57 380 ENF 42

DE-Was06 HDCP2 Flux Station 06 Wasserwerk 50.89 6.43 96 CRO 5

FR-Cor02 HYMEX Flux Station 02 Corte 43.30 9.17 369 GRA 5

FR-Cor13 HYMEX Tower 13 Corte 43.30 9.17 369 GRA 20

FR-Giu04 HYMEX Flux Station 04 San-Giuliano 42.27 9.52 39 GRA 5

FR-Giu07 HYMEX Flux Station 07 San-Giuliano 42.27 9.52 39 GRA 5

NL-Cab CESAR Observatory 51.97 4.93 −0.7 GRA 213

RU-Che Cherksii Tower 68.61 161.34 6 WET 5

SE-Htm Hyltemossa ICOS Sweden 56.10 13.42 115 ENF 150

SE-Svb Svartberget ICOS Sweden 64.25 19.77 270 ENF 150
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